3.581 \(\int \frac{A+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^3} \, dx\)

Optimal. Leaf size=177 \[ \frac{\left (a^2 (2 A+C)+b^2 (A+2 C)\right ) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{d (a-b)^{5/2} (a+b)^{5/2}}-\frac{a \left (a^2 (-C)+3 A b^2+4 b^2 C\right ) \sin (c+d x)}{2 b d \left (a^2-b^2\right )^2 (a+b \cos (c+d x))}-\frac{\left (a^2 C+A b^2\right ) \sin (c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2} \]

[Out]

((a^2*(2*A + C) + b^2*(A + 2*C))*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/((a - b)^(5/2)*(a + b)^(5
/2)*d) - ((A*b^2 + a^2*C)*Sin[c + d*x])/(2*b*(a^2 - b^2)*d*(a + b*Cos[c + d*x])^2) - (a*(3*A*b^2 - a^2*C + 4*b
^2*C)*Sin[c + d*x])/(2*b*(a^2 - b^2)^2*d*(a + b*Cos[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.262513, antiderivative size = 177, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {3022, 2754, 12, 2659, 205} \[ \frac{\left (a^2 (2 A+C)+b^2 (A+2 C)\right ) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{d (a-b)^{5/2} (a+b)^{5/2}}-\frac{a \left (a^2 (-C)+3 A b^2+4 b^2 C\right ) \sin (c+d x)}{2 b d \left (a^2-b^2\right )^2 (a+b \cos (c+d x))}-\frac{\left (a^2 C+A b^2\right ) \sin (c+d x)}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2} \]

Antiderivative was successfully verified.

[In]

Int[(A + C*Cos[c + d*x]^2)/(a + b*Cos[c + d*x])^3,x]

[Out]

((a^2*(2*A + C) + b^2*(A + 2*C))*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/((a - b)^(5/2)*(a + b)^(5
/2)*d) - ((A*b^2 + a^2*C)*Sin[c + d*x])/(2*b*(a^2 - b^2)*d*(a + b*Cos[c + d*x])^2) - (a*(3*A*b^2 - a^2*C + 4*b
^2*C)*Sin[c + d*x])/(2*b*(a^2 - b^2)^2*d*(a + b*Cos[c + d*x]))

Rule 3022

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[
((A*b^2 + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 1)*(a^2 - b^2)), x] + Dist[1/(b*(m + 1)*
(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[a*b*(A + C)*(m + 1) - (A*b^2 + a^2*C + b^2*(A + C)*(m + 1)
)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 2754

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[((
b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 - b^2)), x] + Dist[1/((m + 1)*(a^2 - b^2
)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[(a*c - b*d)*(m + 1) - (b*c - a*d)*(m + 2)*Sin[e + f*x], x], x], x] /
; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && IntegerQ[2*m]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{A+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^3} \, dx &=-\frac{\left (A b^2+a^2 C\right ) \sin (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}-\frac{\int \frac{-2 a b (A+C)+\left (A b^2-a^2 C+2 b^2 C\right ) \cos (c+d x)}{(a+b \cos (c+d x))^2} \, dx}{2 b \left (a^2-b^2\right )}\\ &=-\frac{\left (A b^2+a^2 C\right ) \sin (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}-\frac{a \left (3 A b^2-a^2 C+4 b^2 C\right ) \sin (c+d x)}{2 b \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}+\frac{\int \frac{b \left (a^2 (2 A+C)+b^2 (A+2 C)\right )}{a+b \cos (c+d x)} \, dx}{2 b \left (a^2-b^2\right )^2}\\ &=-\frac{\left (A b^2+a^2 C\right ) \sin (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}-\frac{a \left (3 A b^2-a^2 C+4 b^2 C\right ) \sin (c+d x)}{2 b \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}+\frac{\left (a^2 (2 A+C)+b^2 (A+2 C)\right ) \int \frac{1}{a+b \cos (c+d x)} \, dx}{2 \left (a^2-b^2\right )^2}\\ &=-\frac{\left (A b^2+a^2 C\right ) \sin (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}-\frac{a \left (3 A b^2-a^2 C+4 b^2 C\right ) \sin (c+d x)}{2 b \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}+\frac{\left (a^2 (2 A+C)+b^2 (A+2 C)\right ) \operatorname{Subst}\left (\int \frac{1}{a+b+(a-b) x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{\left (a^2-b^2\right )^2 d}\\ &=\frac{\left (2 a^2 A+A b^2+a^2 C+2 b^2 C\right ) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{(a-b)^{5/2} (a+b)^{5/2} d}-\frac{\left (A b^2+a^2 C\right ) \sin (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}-\frac{a \left (3 A b^2-a^2 C+4 b^2 C\right ) \sin (c+d x)}{2 b \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}\\ \end{align*}

Mathematica [A]  time = 0.785877, size = 170, normalized size = 0.96 \[ \frac{\frac{a \left (C \left (a^2-4 b^2\right )-3 A b^2\right ) \sin (c+d x)}{b (a-b)^2 (a+b)^2 (a+b \cos (c+d x))}+\frac{\left (a^2 C+A b^2\right ) \sin (c+d x)}{b (b-a) (a+b) (a+b \cos (c+d x))^2}-\frac{2 \left (a^2 (2 A+C)+b^2 (A+2 C)\right ) \tanh ^{-1}\left (\frac{(a-b) \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{b^2-a^2}}\right )}{\left (b^2-a^2\right )^{5/2}}}{2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + C*Cos[c + d*x]^2)/(a + b*Cos[c + d*x])^3,x]

[Out]

((-2*(a^2*(2*A + C) + b^2*(A + 2*C))*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]])/(-a^2 + b^2)^(5/2)
+ ((A*b^2 + a^2*C)*Sin[c + d*x])/(b*(-a + b)*(a + b)*(a + b*Cos[c + d*x])^2) + (a*(-3*A*b^2 + (a^2 - 4*b^2)*C)
*Sin[c + d*x])/((a - b)^2*b*(a + b)^2*(a + b*Cos[c + d*x])))/(2*d)

________________________________________________________________________________________

Maple [B]  time = 0.033, size = 810, normalized size = 4.6 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^3,x)

[Out]

-4/d*b/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^2*a/(a-b)/(a^2+2*a*b+b^2)*tan(1/2*d*x+1/2*c)^3*A-1/
d*b^2/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^2/(a-b)/(a^2+2*a*b+b^2)*tan(1/2*d*x+1/2*c)^3*A-1/d/(
a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^2/(a-b)/(a^2+2*a*b+b^2)*tan(1/2*d*x+1/2*c)^3*a^2*C-4/d/(a*t
an(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^2/(a-b)/(a^2+2*a*b+b^2)*tan(1/2*d*x+1/2*c)^3*a*b*C-4/d*b/(a*ta
n(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^2*a/(a+b)/(a^2-2*a*b+b^2)*tan(1/2*d*x+1/2*c)*A+1/d/(a*tan(1/2*d
*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^2/(a+b)/(a^2-2*a*b+b^2)*tan(1/2*d*x+1/2*c)*A*b^2+1/d/(a*tan(1/2*d*x+1/
2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^2/(a+b)/(a^2-2*a*b+b^2)*tan(1/2*d*x+1/2*c)*a^2*C-4/d/(a*tan(1/2*d*x+1/2*c)^
2-tan(1/2*d*x+1/2*c)^2*b+a+b)^2/(a+b)/(a^2-2*a*b+b^2)*tan(1/2*d*x+1/2*c)*a*b*C+2/d/(a^4-2*a^2*b^2+b^4)/((a+b)*
(a-b))^(1/2)*arctan((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))*a^2*A+1/d*b^2/(a^4-2*a^2*b^2+b^4)/((a+b)*(a-
b))^(1/2)*arctan((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))*A+1/d/(a^4-2*a^2*b^2+b^4)/((a+b)*(a-b))^(1/2)*a
rctan((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))*C*a^2+2/d/(a^4-2*a^2*b^2+b^4)/((a+b)*(a-b))^(1/2)*arctan((
a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))*b^2*C

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.04314, size = 1562, normalized size = 8.82 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^3,x, algorithm="fricas")

[Out]

[-1/4*(((2*A + C)*a^4 + (A + 2*C)*a^2*b^2 + ((2*A + C)*a^2*b^2 + (A + 2*C)*b^4)*cos(d*x + c)^2 + 2*((2*A + C)*
a^3*b + (A + 2*C)*a*b^3)*cos(d*x + c))*sqrt(-a^2 + b^2)*log((2*a*b*cos(d*x + c) + (2*a^2 - b^2)*cos(d*x + c)^2
 + 2*sqrt(-a^2 + b^2)*(a*cos(d*x + c) + b)*sin(d*x + c) - a^2 + 2*b^2)/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c
) + a^2)) + 2*((4*A + 3*C)*a^4*b - (5*A + 3*C)*a^2*b^3 + A*b^5 - (C*a^5 - (3*A + 5*C)*a^3*b^2 + (3*A + 4*C)*a*
b^4)*cos(d*x + c))*sin(d*x + c))/((a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - b^8)*d*cos(d*x + c)^2 + 2*(a^7*b - 3*a^5*
b^3 + 3*a^3*b^5 - a*b^7)*d*cos(d*x + c) + (a^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^2*b^6)*d), 1/2*(((2*A + C)*a^4 + (A
 + 2*C)*a^2*b^2 + ((2*A + C)*a^2*b^2 + (A + 2*C)*b^4)*cos(d*x + c)^2 + 2*((2*A + C)*a^3*b + (A + 2*C)*a*b^3)*c
os(d*x + c))*sqrt(a^2 - b^2)*arctan(-(a*cos(d*x + c) + b)/(sqrt(a^2 - b^2)*sin(d*x + c))) - ((4*A + 3*C)*a^4*b
 - (5*A + 3*C)*a^2*b^3 + A*b^5 - (C*a^5 - (3*A + 5*C)*a^3*b^2 + (3*A + 4*C)*a*b^4)*cos(d*x + c))*sin(d*x + c))
/((a^6*b^2 - 3*a^4*b^4 + 3*a^2*b^6 - b^8)*d*cos(d*x + c)^2 + 2*(a^7*b - 3*a^5*b^3 + 3*a^3*b^5 - a*b^7)*d*cos(d
*x + c) + (a^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^2*b^6)*d)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)**2)/(a+b*cos(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.38806, size = 498, normalized size = 2.81 \begin{align*} \frac{\frac{{\left (2 \, A a^{2} + C a^{2} + A b^{2} + 2 \, C b^{2}\right )}{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (2 \, a - 2 \, b\right ) + \arctan \left (\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\sqrt{a^{2} - b^{2}}}\right )\right )}}{{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} \sqrt{a^{2} - b^{2}}} - \frac{C a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 4 \, A a^{2} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 3 \, C a^{2} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 3 \, A a b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 4 \, C a b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - A b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - C a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 4 \, A a^{2} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 3 \, C a^{2} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 3 \, A a b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 4 \, C a b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - A b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )}{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a + b\right )}^{2}}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^3,x, algorithm="giac")

[Out]

((2*A*a^2 + C*a^2 + A*b^2 + 2*C*b^2)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(2*a - 2*b) + arctan((a*tan(1/2*d*x
+ 1/2*c) - b*tan(1/2*d*x + 1/2*c))/sqrt(a^2 - b^2)))/((a^4 - 2*a^2*b^2 + b^4)*sqrt(a^2 - b^2)) - (C*a^3*tan(1/
2*d*x + 1/2*c)^3 + 4*A*a^2*b*tan(1/2*d*x + 1/2*c)^3 + 3*C*a^2*b*tan(1/2*d*x + 1/2*c)^3 - 3*A*a*b^2*tan(1/2*d*x
 + 1/2*c)^3 - 4*C*a*b^2*tan(1/2*d*x + 1/2*c)^3 - A*b^3*tan(1/2*d*x + 1/2*c)^3 - C*a^3*tan(1/2*d*x + 1/2*c) + 4
*A*a^2*b*tan(1/2*d*x + 1/2*c) + 3*C*a^2*b*tan(1/2*d*x + 1/2*c) + 3*A*a*b^2*tan(1/2*d*x + 1/2*c) + 4*C*a*b^2*ta
n(1/2*d*x + 1/2*c) - A*b^3*tan(1/2*d*x + 1/2*c))/((a^4 - 2*a^2*b^2 + b^4)*(a*tan(1/2*d*x + 1/2*c)^2 - b*tan(1/
2*d*x + 1/2*c)^2 + a + b)^2))/d